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1. Background 

This report discusses a program that was written in order to support the FragFly model. The 
FragFly model was created to assess incapacitation of human targets given a detonation of a 
fragmenting munition. The model creates fragments using a ZDATA file (see “Proposed Model 
for Fragmentation using ZDATA Files”);1 the fragments are flown out to the surface of the 
target, and the model Operational Requirements-based Casualty Assessment (ORCA) is used to 
determine if an incapacitation has occurred. This is done by supplying the ORCA program 
interface an entry and exit location of each fragment through the body parts. ORCA assumes that 
the body and all its parts have a particular location and orientation. However, one of the 
objectives of the FragFly model was to allow the target to be posed into any posture. As a 
compromise, rigid-body rotations of body parts about joints are allowed to achieve intended 
postures. Rigid-body rotations by definition have inverse rotations. Therefore, regardless of the 
posture of the body, entry, and exit points of a fragment through the parts of a postured body can 
be translated back into the ORCA reference frame. This overcomes the potential limitations of 
using ORCA to determine incapacitation.  

To do this a multibody system2 was needed to properly represent the body with moveable parts 
such as arms and legs that can be rotated around joints like shoulders and knees. A multibody 
system is defined as an assembly of two or more rigid bodies imperfectly joined together, having 
the possibility of relative movement between them. Such a system was created; however, it lacks 
any kinematic behavior traditionally associated with multibody systems. A graphical user 
interface (GUI) tool was created to provide users a visualization of a body and provide real-time 
feedback for posing the body parts. 

This report is broken down into five main sections.  

1. Section 2. Introduction to the Multibody System.  

2. Section 3. Input Files. This section introduces the readers to the definitions of the system 
and how the system is represented in data files.  

3. Section 4. GUI User Guide. This section explains how to use the GUI created to pose the 
body. 

4. Section 5. Fundamentals of Rotations, Posing, and Postures. This section explains the 
technical and mathematical details of the GUI and informs the reader how the FragFly 
model uses the output files of the GUI. 

                                                 
1 Flanders, B. J. Proposed Model for Finding Initial Conditions of Fragments from a Detonated Munition Using a ZDATA 

File; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, to be published, 2013. 
2http://mat21.etsii.upm.es/mbs/bookPDFs/Chapter01.pdf (accessed May, 2013). 
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5. Section 6. Conclusions. At this section the reader should be able to: 

• Recognize and create the GUI input files. 

• Launch (or start) the GUI. 

• Know how to use the interface in order to manipulate the moveable parts of the target. 

• Recognize and understand the output files of the posing program and how they will be 
used in the FragFly model.  

• Understand the mathematical expression used to perform the manipulations. 

2. Introduction to the Multibody System 

There is quite an extensive body of work related to multibody systems, which has application in 
the gaming industry, computer simulations, and robotics to name a few domains. A rather simple 
system was created to capture core functionality that is needed for the FragFly model. There are 
four major tasks of the system (which are implemented in the GUI).  

1. Read input files. 

2. Visualize the body. 

3. Manipulate the moveable parts of the body (called posing) with real-time feedback. 

4. Allow user to “commit” a posture by writing the output files. 

These tasks can be seen in figure 1 as they are implemented in the GUI.  
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Figure 1. Multibody system framework. 

The input files are shown on the left. These files are read in by the GUI program and stored into 
local memory. It also creates two more data structures called the Translation and Rotation 
matrices. They begin within local memory and are the only pieces of data that are changed 
throughout the lifetime of the GUI. The GUI provides the user a visualization of the body 
(“Visualize”) and user interface buttons to rotate the parts of the body about the joints 
(“Manipulate Body”). Notice the double arrow between the functions. This means that as the 
body is being manipulated, the visualization of the body is updated along with the Translation 
and Rotation matrices. The process ends with the user electing to “commit” a posture (i.e., the 
visual orientation of the parts of the body), which causes the GUI program to write out the 
Translation and Rotation matrices. These output files, along with the Vertex, Face, and Joint 
Location matrices become inputs for the FragFly model. Note that at no point does the GUI 
program change the Vertex, Face, or Joint Location matrices.  

3. Input Files 

Collectively the input files, and the data they contain, represent the user’s full understanding of 
the body within the system. It is expected that many users will not have all the files needed prior 
to reading this report. However, by the end of this section, the reader should be able to recognize 
how to create any missing input files. 
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The data in the system can be categorized into two types: declarative and relational. Declarative 
data represents values that can be measured or quantified. One example of this is a location or 
“point” in Euclidean space. Relational data represent mathematical functions or relations, which 
cannot be replicated using standard mathematical functions.  

Below is a complete list of the input files separated by their type. 

1. Declarative 

a. Vertex Matrix 

b. Joint Location Matrix 

c. Translation Matrix 

d. Rotation Matrix 

2. Relational 

a. Face Matrix 

b. Joint Tree Relation 

c. Component-joint function 

Each of the files will now be discussed. 

3.1 Declarative Data 

Following is a list of the input files that contain nonrelational data. A brief description of the file 
is given, along with suggested file names in parentheses. These names will also be used later 
when displaying code snippets. In general, files should not contain any headers or text (except 
for delimiters), are required to be comma separated, and use “newline” characters to separate 
rows of information.  

1. Vertex Matrix (“vertices.txt”)—lists the points that lay on the surface of each 
subcomponent. It is assumed that all the vertices of the body are stored in one file, called 
the vertex file. For a body comprised of a total of n vertices, the file will have n lines and 
have (at least) four comma-separated columns. Additional columns will be ignored. The 
first three columns of a row are the x, y, z coordinates of a vertex, respectively, and the 
fourth column is the identification number (ID) of the component (a more general term for 
body part) the vertex belongs to. Figure 2 shows a snippet of a vertices file with the 
columns labeled. 
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Figure 2. File description for the Vertex Matrix file (“verts.txt”). 

2. Joint Locations Matrix (“joints.txt”)—lists the location of each joint. For a body with j 
joints, the joint location file will have j rows and three columns. The three columns are the 
x, y, z coordinates of each joint, respectively. Figure 3 shows a snippet of a joint location 
file with the columns labeled. The order that the joints are listed is important because it 
imposes on each joint an ID number. The ID numbers will be referenced in the relational 
data.  

 

Figure 3. File description for the Joint Location Matrix (“joint.txt”). 

3. Translation Matrix (“translations.txt”)—lists all the global translation for each joint. 
Essentially, each joint is assigned a translation vector, which initially has all zero entries. 
As the joint is relocated, the translation vector for the joint is updated to reflect the change 
in location from the original location. All the translation vectors are collected into one 
matrix. For a body with j joints, the translation matrix will have j rows. The ith row of the 
translation matrix will correspond to the ith joint in the Joint Location Matrix. The 
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Translation Matrix is first created in the local memory of the GUI program and is written 
out when the user “commits” a posture. Again, for a body with j joints, the file will consist 
of j rows and three columns. The three columns represent the x, y, z components of each 
translation, respectively. Figure 4 shows a snippet of the Translation Matrix as it would 
appear if it were written out at initialization. 

 

Figure 4. File description of the Translation Matrix (“translation.txt”). 

4. Rotation Matrix (“rotations.txt”)—lists the coordinate system matrix for each joint. This 
matrix is first created in the local memory of the GUI program and is written out when the 
user “commits” a posture. Initially each joint is assigned the three-dimensional identity 
matrix as its rotation matrix. In order to store all the matrices for all the joints together, 
each matrix is “vectorized.” Vectorizing is a process of reshaping a two-dimensional 
matrix into one dimension. A vectorized matrix is one that lists all the elements of the 
matrix along one row such as:  

 �
1 2 3
4 5 6
7 8 9

�   →   [1  2  3  4  5  6  7  8  9]. (1) 

Figure 5 shows a snippet of what the Rotation Matrix file would look like if it were written out 
during initialization.  
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Figure 5. File description of the Rotation Matrix (“rotations.txt”). 

To provide a visualization of some of the declarative data, figure 6 shows the human body used 
in the FragFly model (see “An Alternative Representation of a Simulated Human Body”).3 Each 
component and joint is labeled and table 1 provides a description for each. 

                                                 
3 Flanders, B. J. An Alternative Representation of a Simulated Human Body; U.S. Army Research Laboratory: Aberdeen Proving 
Ground, MD, to be published, 2013. 
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Figure 6. Human body example. Subcomponents and joints are labeled. 
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Table 1. Description of subcomponents and joints by ID. 

Component Joint 
ID Description ID Description 

1 Lower head 1 Neck 
2 Thorax 2 Pelvic 
3 Abdomen 3 Right shoulder 
4 Pelvis 4 Left shoulder 
5 Upper right arm 5 Right elbow 
6 Lower right arm 6 Left elbow 
7 Upper left arm 7 Left hip 
8 Lower left arm 8 Right hip 
9 Upper right leg 9 Left knee 

10 Lower right leg 10 Right knee 
11 Upper left leg 11 Left ankle 
12 Lower left leg 12 Right ankle 
13 Right foot 13 Thoracic vertebra 2 
14 Left foot 14 Thoracic vertebra 10 
15 Neck — — 
16 Upper head — — 

 

3.2 Relational Data 

Following is a list of the input files that contain relational data. 

1. Face Matrix (“faces.txt”)—used to connect vertices together to form surfaces of the target. 
For a body with a total of k faces, the face file has k rows and (at least) four columns. The 
first three columns of a row in the face matrix identify the three vertices that form a 
triangle surface by their row number in the Vertex Matrix. The fourth column represents 
the component identification number that denotes assignment. For instance, if a row in the 
face file reads [1, 17, 28, 5], then this face is formed by connecting the first, seventeenth, 
and twenty-eighth vertices found in the Vertex Matrix into one triangle. This face belongs 
to the component with the ID of 5. Figure 7 shows a template of the face file.  

2. Joint Tree Relation (“joint_tree.txt”)—this file represents the relationship that the joints 
share with each other. This relationship is best described as an ordered tree relationship. 
Note that a body may contain any number of root nodes as illustrated in figure 6, which 
shows the joint tree for a body model in figure 8.
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Figure 7. File description of Face Matrix (“faces.txt”). 

 

 

Figure 8. Joint tree with component leaves.
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There are many ways to represent this structure conceptually. One is to define a relation so that  

 𝐽𝑡𝑟𝑒𝑒(𝑖, 𝑗) = �1 
0

�  if joint j is a child of joint i
otherwise

 . (2) 

To be more explicit, one can say that 𝐽𝑡𝑟𝑒𝑒(𝑖, 𝑗) is true if and only if the joint that is located in the 
jth row in the “joints.txt” matrix is a child of the joint that is located in the ith row of the same 
matrix. This relation can be expressed by forming, for a body with j joints, a square matrix that 
has j rows and columns. The entry of the ith row and jth column will be the value of 𝐽𝑡𝑟𝑒𝑒(𝑖, 𝑗). 
Table 2 shows the entire file. Just like all other files, the values are comma separated and rows 
are separated by a newline character.  

Table 2. Joint Tree Relation Matrix. 

  Joint 

  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Joint 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 1 1 1 1 1 1 0 0 0 0 0 0 1 1 

3 0 0 1 0 1 0 0 0 0 0 0 0 0 0 

4 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 1 0 1 0 1 0 0 0 

8 0 0 0 0 0 0 0 1 0 1 0 1 0 0 

9 0 0 0 0 0 0 0 0 1 0 1 0 0 0 

10 0 0 0 0 0 0 0 0 0 1 0 1 0 0 

11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

13 1 0 1 1 1 1 0 0 0 0 0 0 1 0 

14 1 0 1 1 1 1 0 0 0 0 0 0 1 1 
 

3. Component-joint function (“comp_function.txt”)—notice that in figure 8 the components 
described in table 1 appear attached to a joint. Continuing the tree analogy, the 
subcomponents can be thought of as the leaves on the joint tree. Leaves can only belong to 
one branch, and in the same way, a subcomponent can only be attached to one joint. Thus 
one can define a function 𝐶𝑗𝑜𝑖𝑛𝑡(𝑐) that maps the set of subcomponents 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 →
𝐽𝑜𝑖𝑛𝑡𝑠 so that 

 𝐶𝑗𝑜𝑖𝑛𝑡(𝑐) = 𝑗  (3) 

if and only if the subcomponent s is attached to joint j. It is left as an exercise to the reader to 
form the component joint function for the tree in figure 8.



 12 

 

4. GUI User Guide 

Once the user has correctly created all the input files, he is then ready to use the GUI. The GUI 
program was written in MATLAB.* The language was chosen because of its three dimensionally 
graphing and viewing capabilities. The GUI program is a collection of data files and MATLAB 
scripts. All the files and scripts should be collocated in one file directory for convenience (this 
avoids the user from being required to specify file paths). The MATLAB current directory 
should be set to the file directory containing all the files.  

There are three actions that a user can perform: 

1. START: this will launch the GUI. 

2. POSE: control mechanisms allow the user to pose the object. 

3. COMMIT: after posing is complete, the user can write out the posture files. 

Each action will now be discussed in detail. 

4.1 START 

Assuming that the files in the previous section are named accordingly, then in the “Command 
Window” type: 
>> pose_body('verts.txt', 'faces.txt', 'joints.txt', 'joint_tree.txt', 
'comp_function.txt') 

The order of files is important. The file names should be in the following order: Vertex Matrix, 
Face Matrix, Joint Location Matrix, Joint Tree Relation, and Component-Joint Function. 

This will execute the function called “pose_body,” which will produce the window as seen in 
figure 9. 

The user may prefer to maximize the window, which will make the layout of the window less 
cluttered. 

                                                 
* MATLAB is a registered trademark of The MathWorks, Inc. 
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Figure 9. Startup window for GUI. 

4.2 POSE  

To pose the body, follow the steps in figure 10.  

1. Select a joint from the drop-down menu labeled “Joint.” The selected joint will appear as a 
red dot. The axis of rotation will be redrawn on the joint selected and all components that 
will be affected by the joint rotation appear as more solid than the unaffected components.  

2. Select an axis of rotation from the drop-down menu labeled “AXOR.” The selected axis 
will appear in bold. The three axes of rotation for a joint will rotate along with the joint. 
The axis of rotation is actually taken from the coordinate system matrices.  

3. Modify the angle of rotation by using the slider labeled “Angle.” 
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Figure 10. Steps to pose an object. 

By default the MATLAB camera toolbar is opened. This allows the user to manipulate the view 
of the target to a desired point of view. Camera actions do not pose the object or affect the 
posture. 

4.3 COMMIT 

After the body is in a desired posture, the user can “commit” the posture by pressing the 
“Commit” button. As mentioned before, pressing this button will write out the Translation and 
Rotation matrices into files. Before the files are written out an adjustment is made to the 
translation vectors. The adjustment is to ensure that the lowest point on the body (the vertex with 
the least z component value) is incident with the x-y plane. The user will be prompted to provide 
file names for each posture file. Default values are given. These files are ready to be used in the 
FragFly model.  
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5. Fundamentals of Rotations, Posing, and Postures 

Rotating a body part about a joint (called a joint rotation) is a multistep process. In a joint 
rotation one must be able determine which components and joints will be affected. For instance a 
shoulder rotation will rotate the entire arm as well as the elbow joint. If a joint is rotated, its 
translation vector and rotation matrix must be updated in the Translation and Rotation matrices, 
respectively. Before the joint rotation algorithm is discussed, three key concepts will be 
presented: 

1. Rotate a point about the origin 

2. Rotating a point about another point given a rotation matrix 

3. Rotate a joint’s rotation matrix. 

These concepts will help support three main algorithms: 

4. Posing Algorithm 

5. Posture Algorithm 

6. Reverse-Posture Algorithm.  

5.1 Rotate a Point About the Origin 

The simplest rotation is one about the origin. Rotations about the origin are defined by an axis of 
rotation (required to be a unit vector), call it u�⃗ , and an angle of rotation, call it θ. The vector u�⃗  
and angle θ can be used to form a matrix R, 

𝑅 = 𝑓(𝑢, 𝜃) = �
cos 𝜃 + 𝑢𝑥

2 ∙ 𝑑 𝑢𝑥 ∙ 𝑢𝑦 ∙ 𝑑 − 𝑢𝑧 ∙ sin 𝜃 𝑢𝑥 ∙ 𝑢𝑧 ∙ 𝑑 + 𝑢𝑦 ∙ sin 𝜃
𝑢𝑥 ∙ 𝑢𝑦 ∙ 𝑑 + 𝑢𝑧 ∙ sin 𝜃 cos 𝜃 + 𝑢𝑦

2 ∙ 𝑑 𝑢𝑦 ∙ 𝑢𝑧 ∙ 𝑑 − 𝑢𝑥 ∙ sin 𝜃
𝑢𝑥 ∙ 𝑢𝑧 ∙ 𝑑 − 𝑢𝑦 ∙ sin 𝜃 𝑢𝑦 ∙ 𝑢𝑧 ∙ 𝑑 + 𝑢𝑥 ∙ sin 𝜃 cos 𝜃 + 𝑢𝑧

2 ∙ 𝑑
�   (4) 

 
where (ux, uy, uz) = 𝑢�⃗  and d is (1 – cos θ). The matrix R is matrix for of the Rodriguez rotation 
formula.4 It can be used to rotate a point, v, such that the rotated point, v′, is 

 𝑣′ = 𝑅𝑣. (5) 

This is represented in figure 11, where θ is assumed to be positive. 

                                                 
4Mason, M. T. Mechanics of Robotic Manipulation, Massachusetts Institute of Technology: The MIT Press, Cambridge, MA; 

Chapter 3, figure 3.26, 2001; 46. 



 16 

 

Figure 11. Simple rotation of a point about the origin. 

Of course, the rotation of a point can also be expressed as a translation, call it t. Thus, if  

 𝑡 = 𝑅𝑣 − 𝑣, (6) 

then v′ can be defined as 

 𝑣′ = 𝑣 + 𝑡. (7) 

5.2 Rotate a Point About Another Point Given a Rotation Matrix 

Assume that one wanted to rotate about a point p instead of the origin. This requires two 
translations. The point v is translated first by p, effectively making p the origin. That point is 
rotated according to rotation matrix R. Finally, the rotated point is placed back into the original 
reference frame (a second translation of p). Thus t is defined as 

 𝑡 = 𝑅(𝑣 − 𝑝) + 𝑝 − 𝑣. (8) 

This translation can then be applied to v as in equation 7.  

Recall from section 3.1 Declarative Data, that the each joint is assigned a global translation 
vector. It begins with all zero entries. Every time t in equation 8 is calculated for a joint, we add 
it to its global translation vector. Thus, one can say that for n poses that affect joint j, then  

 𝑇𝑗 = ∑ 𝑡𝑖,𝑗
𝑛
𝑖=1 , (9) 

where 𝑇𝑗 is the global translation vector for joint j. 
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5.3 Rotate a Joint’s Rotation Matrix 

When a joint is rotated about another joint, its location may change. Regardless though, its 
rotation matrix will change. As discussed in section 3.1, number 2., each joint is assigned a 
rotation matrix. Assume that its rotation matrix is A. Then A is updated (symbolized by “→”) 
such that 

 𝐴 → 𝑅𝐴  (10) 

for a rotation matrix R, defined in section 4.1.  

Similar to equation 9, after a sequence n poses (that affect joint j), the rotation matrix for joint j 
(represented as 𝐴𝑗) will be 

 𝐴𝑗 → ∏ 𝑅𝑖,𝑗
𝑛
𝑖=1 . (11) 

5.3.1 Posing Algorithm 

We are ready to define a joint rotation (or posing) algorithm. First the following is defined: 

• “joints”—the number of joints in the body 

• “comps”—the number of components in the body 

• “verts(c)”—the number of vertices in a component for a component with ID c 

• “v(vx)”—the three-dimensional location of vertex vx 

• “p(j)”—the three-dimensional location of joint j 

•  “f(u�⃗ , θ)”—a function that returns the rotation matrix defined by u�⃗  and θ; see equation 4. 

• “T(a)”—a function that returns the global translation vector for joint with ID a 

• “𝐴(𝑎)”—a function that returns the rotation matrix for joint with ID a 

• “*”—matrix multiplication 

• 𝐶𝑗𝑜𝑖𝑛𝑡(𝑐) and 𝐽𝑡𝑟𝑒𝑒(𝑖, 𝑗) as previously defined 
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The algorithm Pose is defined for the selection of a joint (j), an axis of rotation (u�⃗ ), and an angle 
of rotation (θ) as (line numbers are provided in brackets and “//” indicates commented lines): 

[ 1] Pose(j, u�⃗ , θ){ 
[ 2]  R = f(u�⃗ , θ) // Rotation matrix calculated 
[ 3]  for (a = 1:joints){ 
[ 4]     if (Jtree(j,a) == 1){ 
[ 5]      // Translate affected joint 
[ 6]       t = R*(p(a) – p(j)) + p(j) – p(a) 
[ 7]      p(a) → p(a) + t 
[ 8]       // Add t to T 
[ 9]       T(a) →  T(a) + t 
[10]      // Rotate coordinate system of affected joint 
[11]      A(a) → R*A(a) 
[12]       // Check if a subcomponent is attached to the joint 
[13]       // If so, rotate the subcomponent 
[14]       for (c = 1:comps){ 
[15]         if (Cjoint(c)== a){ 
[16]           for (vx = 1:verts(c){ 

 [17]       t = R(v(vx) – p(j)) + p(j) – v(vx) 
 [18]        v(vx) → v(vx) + t 
 [19]      } 
      [20]         } 

[21]       } 
[22]    } 
[23]  } 
[24] } 
 

The algorithm first calculates the rotation matrix using the axis and angle of rotation. For each 
joint in the body (line 3), if the joint is a child of joint j (line 4), then the child joint is relocated 
(line 7). The child joint’s rotation matrix and global translation vector are also updated (lines 9 
and 11). Finally, whatever component affected (line 15), all of its vertices need to be translated 
(line 18).  

Note that vertices are changed for visualization purposes only. The Vertex Matrix file is never 
changed only its representation within the physical memory of the program.  

5.3.2 Transforming a Body Into a Posture 

A posture is defined as a terminating sequence of poses. However, now a more formal definition 
can be presented. Notice that the posing algorithm updates the global translation vector and 
coordinate system for certain joints (lines 9 and 11 of the Pose algorithm). Therefore, a 
terminating sequence of poses will produce final values for the global translation vector and 
rotation matrix for each joint. Thus, a posture is defined as a set of Translation (T) and Rotation 
(A) matrices. 

 𝑃 = {𝜯, 𝑨} (12)



 19 

 

This set represents a relatively small set of data needed to posture an object compared to 
recording a translation vector for each vertex. This is exactly how the posture is defined in the 
FragFly model. 

Similar to the Pose algorithm, a Posture algorithm will be presented. The purpose of this 
algorithm is to translate the vertices of a body to match the predetermined posture found in the 
posture files. There is no way to load a posture into the GUI. However, this would be a very 
simple update to the GUI. The Posture algorithm will only modify the locations of the vertices in 
the subcomponents. Assuming one has access to the posture P as defined in section 5.3.1. Refer 
to the Pose pseudo-code for function definitions. 

 
[ 1] Posture(T,A){ 
[ 2]  for (s = 1:subcomponents){  
[ 3]    j = Cjoint(s) 
[ 4]     R = A(j) 
[ 5]    p = v(j)  
[ 6]     for (vx = 1:verts(s){   
[ 7]      t = R*(vert(vx) – p) + p + T(j) 
[ 8]       vert(vx) → vert(vx) + t 
[ 9]       } 
[10]    } 
[11]  } 
[12] } 
 

5.3.3 Reverse Posture Algorithm 

Assume that one wanted to reverse the process of transforming a body into a posture. In the 
Posture algorithm, only the vertices of the appropriate component were translated. The reverse 
posture algorithm will add a layer of abstraction by returning a translation vector based on the 
inputs. The algorithm is defined this way so that the FragFly model can have a method to map 
the locations of the entry and exit points to a component to the ORCA reference frame.  

The reverse posture algorithm, call it “Unposture,” has three input arguments: 

1. v —three-dimensional point 

2. c —a subcomponent ID that p is associated with 

3. P —the posture set 

The Unposture algorithm returns one value t, which is a translation vector. This represents the 
translation of the point v to move it to the original orientation of the body part with ID c.  
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The following functions and variables will be used in the pseudo-code: 

• “P(T,j)”—a function that returns the global translation vector for the joint with ID j 

• “P(A,j)”—a function that returns the coordinate system for the joint with ID j 

• “(A)T ”—a unary operator that transposes the matrix A 

•  “joint(j)”—a function that provides the location of the joint with ID j 

The algorithm Unposture thus defined as: 

[ 1] t = Unpose(v, c, P){ 
[ 2]  j = JS(s)  
[ 3]  t = (P(A,j))T*(v – (joint(j) + P(T,j))) + joint(j) - v 
[ 4]   return t 
 

The justification of this algorithm is left to the reader. 

6. Conclusions 

The FragFly model requires that users provide a number of input files associated with the human 
target. These files are part of a multibody system that was created that allows a body constructed 
of moveable parts to be manipulated. A GUI was created that simplifies the task of manipulating 
the body and provides real-time feedback. The details of the operations within the GUI were 
discussed, as well as the role the output files for the GUI play in the FragFly model.  

The following are suggestions for future development: 

1. Cosmetic changes to the GUI to promote ease of use. 

2. Allow users to load postures into the GUI from posture files. 

3. Include an “undo” button to take back the last set of changes for a body part. 
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Appendix A.  “pose_body.m” 

                                                 
  This appendix appears in its original form, without editorial change. 
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function pose_body(v_file, f_file, joints_file, j2j_file, j2c_file) 
    % Load data 
    v = dlmread(v_file,','); 
    f = dlmread(f_file,','); 
    p2p =  dlmread(j2j_file,','); 
    p2c = dlmread(j2c_file,','); 
    leafj = p2c(end,:); 
    p2c(end,:) = []; 
    joints = dlmread(joints_file,','); 
    org_j = joints; 
    jR =   repmat([1 0 0 0 1 0 0 0 1],size(p2p,1),1); 
    axor = repmat([1 0 0 0 1 0 0 0 1],size(p2p,1),1); 
    thetas = zeros(14,3); 
    cameratoolbar; 
    %hax = axes('Parent',hfig); 
    j = 1; ax = 1; theta = 0; 
    %%%%%%%%%%%%%%%%%% Slider  
    angle_text = uicontrol('Style','text',... 
        'String','Angle: 0', 'Position',[20 60 100 20]); 
    slider = uicontrol('Style', 'slider',... 
    'Min',-180,'Max',180,'Value',0,... 
    'Position', [20 40 300 20],'SliderStep',[1/360 10/360],... 
    'Callback', {@slider_callback,angle_text}); 
    uicontrol('Style','text','String',['-150      -100      -50        0',... 
        '        50        100     150  '], 'Position',[20 0 300 20]); 
    uicontrol('Style','text','String',['           |            |       ',... 
        '    |            |            |           |           |           '],... 
        'Position',[20 20 300 20]); 
    set(slider,'UserData',{joints,axor,jR,leafj,p2p,j,ax,org_j,v,f,... 
        theta,p2c,thetas}); 
    graph_stuff(slider); 
    legend({'Target','Joints','Selected Joint','Pitch','Roll','Yaw'},... 
        'Location','NorthOutside') 
        daspect([1 1 1]); 
    %%%%%%%%%%%%%%%%%% Joint list 
    j_text = uicontrol('Style','text',... 
        'String','Joint:', 'Position',[20 160 40 20]); 
    jlist = uicontrol('Style', 'popup',... 
               'String', '1|2|3|4|5|6|7|8|9|10|11|12|13|14',... 
               'Position', [20 110 40 50],... 
               'Callback', {@jlist_callback, slider}); 
    %%%%%%%%%%%%%%%%%% Axor 
    ax_text = uicontrol('Style','text',... 
        'String','AXOR:', 'Position',[20 110 40 20]); 
    axlist = uicontrol('Style', 'popup',... 
               'String', 'Pitch|Roll|Yaw',... 
               'Position', [20 60 80 50],... 
               'Callback', {@ax_callback,slider}); 
    %%%%%%%%%%%%%%%%%% Commit Button 
    comm_pb = uicontrol('Style','pushbutton',... 
        'Position',[120 110 100 40], 'String', 'Commit','Callback',... 
        {@commit_callback,slider}); 
    axis([-1 1 -1 1 0 2.2]) 
    set(gca,'view',[158.0000   13]); 
end 
%%%%%%%%%%%%%%%%%%% SUBROUTINES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    function slider_callback(hObj, eventdata, anglhand)   
        ud = get(hObj,'UserData'); 
        joints = cell2mat(ud(1));     
        axor =   cell2mat(ud(2)); 
        jR =     cell2mat(ud(3));    
        leafj =  cell2mat(ud(4));  
        p2p=     cell2mat(ud(5)); 
        j =      cell2mat(ud(6));  
        ax =     cell2mat(ud(7));  
        org_j =  cell2mat(ud(8)); 
        v=      cell2mat(ud(9));  
        f =     cell2mat(ud(10));  
        thetas = cell2mat(ud(13)); 
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        % set(hObj,'Value',thetas(j)); 
        angle = round(get(hObj,'Value'))-thetas(j,ax); 
        thetas(j,ax) = round(get(hObj,'Value')); 
        p2c =   cell2mat(ud(12)); 
        theta = thetas(j,ax); 
        [joints, axor, jR, R]=TRT(j,ax,angle,joints,axor,p2p,jR); 
        trans = joints; 
        % Apply each translation and rotation to each component 
        for vr = 1:size(v,1) 
            if (p2c(j,v(vr,4)) == 1) 
                v(vr,1:3) = (R*(v(vr,1:3) - trans(j,:))' + trans(j,:)')'; 
            end 
        end 
        set(hObj,'UserData',{joints,axor,jR,leafj,p2p,j,ax,org_j,v,f,0,... 
            p2c,thetas}); 
        set(anglhand,'String',['Angle: ',... 
            num2str(round(get(hObj,'Value')))]); 
        graph_stuff(hObj); 
    end 
    function jlist_callback(hObj, eventdata, shand) 
        j= get(hObj,'Value'); 
        ud = get(shand,'UserData'); 
        ud(6) = num2cell(j); thetas = cell2mat(ud(13));ax = ud{7}; 
        cla; hold on; 
        joints = cell2mat(ud(1));v=cell2mat(ud(9)); f =  cell2mat(ud(10)); 
        set(shand, 'UserData', ud); 
        set(shand, 'Value',thetas(j,ax)); 
        graph_stuff(shand); 
    end 
    function ax_callback(hObj, eventdata, shand) 
        x= get(hObj,'Value'); 
        ud = get(shand,'UserData'); 
        ud(7)=num2cell(x); j=ud{6}; 
        set(shand, 'UserData', ud); 
        thetas = cell2mat(ud(13)); 
        set(shand, 'Value',thetas(j,x)); 
        graph_stuff(shand); 
    end 
    function commit_callback(hObj,eventdata,shand) 
        ud = get(shand,'UserData'); 
        jR = cell2mat(ud(3)); 
        % C++ conversion 
        for j = 1:size(jR,1) 
            jR(j,:) = reshape(reshape(jR(j,:),3,3)',1,9); 
        end 
        trans = cell2mat(ud(1))-cell2mat(ud(8)); 
        v = cell2mat(ud(9)); 
        trans(:,3) = trans(:,3) - min(v(:,3)); 
        rot_file = uiputfile('rotations.txt','Save Rotation Matrices'); 
        if (rot_file ~= 0) 
            dlmwrite(rot_file,jR,'delimiter',',','newline','pc'); 
        end 
        trans_file = uiputfile('translations.txt','Save Translation Matrix'); 
        if (trans_file ~= 0) 
            dlmwrite(trans_file,trans,'delimiter',',','newline','pc'); 
        end 
        try 
            % Using the rotate_human tool 
            sv = dlmread('verts.txt',','); 
            sf = dlmread('faces.txt',','); 
            jR = dlmread(rot_file,','); 
            trans = dlmread(trans_file,','); 
            joints = dlmread('joints.txt',','); 
            leafj = [1,13,14,2,3,5,4,6,8,10,7,9,12,11,13,1]; 
            for svr = 1:size(sv,1) 
                lfc = leafj(sv(svr,4)); 
                R = reshape(jR(lfc,:),3,3)'; 
                sv(svr,1:3) = ... 
                (R*(sv(svr,1:3)-joints(lfc,:))'+joints(lfc,:)')'+trans(lfc,:); 
            end 
            cla; hold on; 
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            patch('vertices',sv(:,1:3),'faces',sf(:,1:3)+1,'facealpha',1,... 
                'edgealpha',0.005,'facecolor','g','facelighting','phong'); 
            daspect([1 1 1]) 
        catch 
            errordlg('Could not find files or you cancelled while creating files.'); 
        end 
    end 
    function graph_stuff(slider) 
        cla; hold on; 
        ud = get(slider,'UserData'); 
        % Graph patches 
        v=cell2mat(ud(9)); f=cell2mat(ud(10));  
        patch('vertices',v(:,1:3),'faces',f(:,1:3)+1,'facealpha',.05,... 
            'edgealpha',0.05,'facecolor','g','facelighting','phong'); 
         
        % Graph joints 
        joints = cell2mat(ud(1)); 
        scatter3(joints(:,1),joints(:,2),joints(:,3),'bo','filled'); 
        j = ud{6}; 
        scatter3(joints(j,1),joints(j,2),joints(j,3),'ro','filled'); 
        % Add text labels 
        ofst = .04; 
        for jj=1:size(joints,1) 
            text(joints(jj,1)+ofst,joints(jj,2)+ofst,joints(jj,3)+ofst,... 
                num2str(jj),'FontSize',10); 
        end 
        jR = cell2mat(ud(3)); 
        scl = .4; 
        %if (ud{7} ==1) 
        plot3([joints(j,1)   joints(j,1)+jR(j,1)*scl],... 
              [joints(j,2)   joints(j,2)+jR(j,2)*scl],... 
              [joints(j,3)   joints(j,3)+jR(j,3)*scl],'r-',... 
              'Linewidth',1+2*(ud{7}==1)); 
        %elseif (ud{7} == 2) 
          plot3([joints(j,1) joints(j,1)+jR(j,4)*scl],... 
              [joints(j,2)   joints(j,2)+jR(j,5)*scl],... 
              [joints(j,3)   joints(j,3)+jR(j,6)*scl],'b-',... 
              'Linewidth',1+2*(ud{7}==2)); 
        %else 
          plot3([joints(j,1) joints(j,1)+jR(j,7)*scl],... 
              [joints(j,2)   joints(j,2)+jR(j,8)*scl],... 
              [joints(j,3)   joints(j,3)+jR(j,9)*scl],'k-',... 
              'Linewidth',1+2*(ud{7}==3));   
        %end 
        joints = find(ud{1,5}(ud{1,6},:)); 
        for j=1:size(joints,2) 
            comps = find(ud{1,4}==joints(j)); 
            for c = 1:size(comps,2) 
                patch('vertices',v(:,1:3),'faces',f(f(:,4)+1==comps(c),1:3)+1,'facealpha',.5,... 
                    'edgealpha',0.1,'facecolor','g','facelighting','phong'); 
            end 
        end 
        light 
        daspect([1 1 1]) 
    end 
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Appendix B.  “TRT.m”  

                                                 
  This appendix appears in its original form, without editorial change. 
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function [pivot, axor, jR, R] = TRT(k, x, rads, pivot, axor, p2p, jR) 
% Find the rotation matrix R, and translate, rotate, and translate affected joints 
R = zeros(3); 
rads=rads*(pi/180); 
c=cos(rads);d=1-c;s=sin(rads); 
v0=axor(k,3*(x-1)+1); 
v1=axor(k,3*(x-1)+2); 
v2=axor(k,3*x); 
  R(1)=v0*v0*d+   c ; R(4)=v0*v1*d-v2*s ; R(7)=v0*v2*d+v1*s ; 
  R(2)=v1*v0*d+v2*s ; R(5)=v1*v1*d+   c ; R(8)=v1*v2*d-v0*s ; 
  R(3)=v2*v0*d-v1*s ; R(6)=v2*v1*d+v0*s ; R(9)=v2*v2*d+   c ; 
for p = 1:size(p2p,2) 
    if (p2p(k,p) == 1) 
        % Transform affected pivot points 
        pivot(p,1:3) = (R*(pivot(p,1:3) - pivot(k,:))' + pivot(k,:)')'; 
        % Transform affected axes 
        for jj = 1:3 
            tax = R*(axor(p,(3*(jj-1)+1):3*jj))'; 
            axor(p,(3*(jj-1)+1):3*jj) = tax/norm(tax); 
        end 
        % The jR matrices are stored row-major. So we need to transpose 
        % them in order to multiply it by R 
        jR(p,:) = reshape((R*reshape(jR(p,:),3,3)),1,9); 
    end 
end 
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